Predictive Variable Selection for Subgroup Identification
ثبت نشده
چکیده
6
منابع مشابه
Performance of several variable-selection methods applied to real ecological data.
I evaluated the predictive ability of statistical models obtained by applying seven methods of variable selection to 12 ecological and environmental data sets. Cross-validation, involving repeated splits of each data set into training and validation subsets, was used to obtain honest estimates of predictive ability that could be fairly compared among methods. There was surprisingly little diffe...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملPredictive Model Selection
We consider the problem of selecting one model from a large class of plausible models. A predictive Bayesian viewpoint is advocated to avoid the speci cation of prior probabilities for the candidate models and the detailed interpretation of the parameters in each model. Using criteria derived from a certain predictive density and a prior speci cation that emphasizes the observables, we implemen...
متن کاملRandom forests for feature selection in QSPR Models - an application for predicting standard enthalpy of formation of hydrocarbons
BACKGROUND One of the main topics in the development of quantitative structure-property relationship (QSPR) predictive models is the identification of the subset of variables that represent the structure of a molecule and which are predictors for a given property. There are several automated feature selection methods, ranging from backward, forward or stepwise procedures, to further elaborated ...
متن کاملA method for simultaneous variable selection and outlier identification in linear regression*
We suggest a method for simultaneous variable selection and outlier identification based on the computation of posterior model probabilities. This avoids the problem that the model you select depends upon the order in which variable selection and outlier identification are carried out. Our method can find multiple outliers and appears to be successful in identifying masked outliers. We also add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017